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Exercice 1. 1. Soit f : V → W une application linéaire entre deux espaces vectoriels
euclidiens. Montrer que si B = {v1, . . . vn} ⊂ V est une base quelconque et B′ =
{w1, . . . wm} ⊂ W est une base orthonormée, alors la matrice de f dans ces bases
est donnée par

A = (aij) ∈ Mm×n(R) où ai,j = ⟨wi, f(vj)⟩.

2. Soient B = {v1, . . . vn} et B′ = {w1, . . . wn} deux bases d’un espace vectoriel
euclidien V . On suppose que la base B est orthonormée et on note P la matrice
de changement de base de B vers B′. Montrer que P est une matrice orthogonale
si et seulement si la base B′ est aussi orthonormée.

Exercice 2. Répondre à chacune des questions suivantes.
a) Soit g : Rn ×Rn → R une forme bilinéaire symétrique non dégénérée de signature

(p, q), avec 0 ≤ p ≤ n. Existe-t-il des vecteurs v ∈ Rn, v ̸= 0, tels que g(v, v) = 0 ?
□ Oui, toujours.
□ Non, jamais.
□ Cela dépend de la valeur de p.

b) Soit g : V × V → K une forme bilinéaire symétrique sur un K-espace vectoriel V .
Laquelle des assertions suivantes est correcte ?
□ Si g est non-dégénérée, alors pour tout v ∈ V \ {0}, le covecteur θ ∈ V ∗ défini

par θ(w) = g(v, w) est non nul.
□ S’il existe u, v ∈ V tels que g(u, v) ̸= 0, alors g est non-dégénérée.
□ Si g est non-dégénérée, alors il existe v ∈ V \ {0} tel que le covecteur θ ∈ V ∗

défini par θ(w) = g(v, w) est nul.
Rappelons la définition : Une forme bilinéaire g sur un espace vectoriel V est non-dégénérée

si la condition g(x, y) = 0 ∀y ∈ V implique x = 0.

Exercice 3. 1. Prouver que deux matrices symétriques congruentes A et B de Mn(K)
ont même rang (où K est un corps quelconque).

2. Prouver que si A ∈ Mn(C) est une matrice symétrique complexe de rang r, alors
A est congruente à une matrice diagonale de rang r dont les coefficients valent 0
ou 1. Plus précisément dii = +1 pour 1 ≤ i ≤ r où r est le rang de A et tous les
autres coefficients sont nuls.

Exercice 4. Soit Q(x1, x2) = x2
1 − x2

2 la forme quadratique standard de signature (1, 1)
sur R2. Prouver que {u, v} ⊂ R2 est une base de Sylvester si et seulement s’il existe s ∈ R
et ε = ±1 tels que

u =
(

ε cosh(s)
sinh(s)

)
et v = ±

(
sinh(s)

ε cosh(s)

)
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où cosh(s) = 1
2 (es + e−s) et sinh(s) = 1

2 (es − e−s) sont les fonctions cosinus et sinus
hyperboliques.

Exercice 5. 1. Rappeler les notions de cône isotrope, d’indicatrice positive et d’indicatrice
négative d’une forme quadratique Q sur un espace vectoriel réel.

2. Démontrer que ces ensembles déterminent complètement la forme quadratique Q
i.e. si Q1 et Q2 sont deux formes quadratiques telles que

S0(V, Q1) = S0(V, Q2), S+(V, Q1) = S+(V, Q2), S−(V, Q1) = S−(V, Q2),

alors Q1 = Q2.
3. Soit f : V → V un automorphisme linéaire. Montrer que f ∈ O(Q) si et seulement

si les indicatrices et le cône de lumière sont invariants par f , c’est-à-dire

f(S+(V, Q)) = S+(V, Q), f(S−(V, Q)) = S−(V, Q) et f(S0(V, Q)) = S0(V, Q).

(Rappelons que f ∈ O(Q) signifie que Q(f(x)) = Q(x) pour tout x ∈ V ).

Exercice 6. Parmi les assertions suivantes, lesquelles sont correctes ?
1. Toute matrice réelle symétrique définie positive est inversible.
2. Deux matrices symétriques congruentes ont même déterminant.
3. Soit Q une forme quadratique sur un espace vectoriel réel V telle que Q(ei) > 0

pour tous les vecteurs d’une base de V . Peut-on déduire que Q est définie positive ?
4. Une forme quadratique Q sur un espace vectoriel réel V est définie positive si et

seulement si
√

Q est la norme associée à un produit scalaire.

Exercice 7. On considère la forme quadratique Q : R2 → R définie par Q(x1, x2) =
2x1x2.

1. Ecrire la forme bilinéaire symétrique β associée (obtenue par polarisation de Q).
2. Ecrire la matrice de Gram B de cette forme bilinéaire dans la base canonique.
3. Trouver une base orthonormée généralisée (base de Sylvester) {u1, u2} pour Q.
4. Quelle est la signature de Q ?
5. Effectuer la diagonalisation orthonormale de B (i.e. trouver une matrice orthogo-

nale P ∈ O(2) telle que P ⊤BP est diagonale).
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Exercice 8. Trouver le rang et la signature de la matrice symétrique

A =

 3 −2 4
−2 6 2

4 2 3

 .

Cette matrice est-elle définie positive ?

Exercice 9. Soit A ∈ Mm×n(R) une matrice de rang r ≥ 1 dont les valeurs singulières
sont {µ1, . . . , µn} (cf. exercice 11.8). On supposera sans perte de généralité que µi ̸= 0 si
1 ≤ i ≤ r.

1. Montrer qu’il existe des bases orthonormées {v1, . . . , vn} ⊂ Rn et {w1, . . . , wm} ⊂
Rm telles que Avi = µiwi si 1 ≤ i ≤ r et Avi = 0 si i > r.

Indication. On peut prendre pour {vi} une base propre orthonormée pour la
matrice G = A⊤A ∈ Mn(R).

2. En déduire qu’il existe des matrices orthogonales P ∈ O(n) et Q ∈ O(m) telles
que

AP = QD, où D =


µ1 0 · · · 0
0 µ2 · · · 0
0 ... . . . ...
0 · · · · · · µr

0
...
...
0

0 · · · · · · 0 0


Remarque. La décomposition A = QDP ⊤ s’appelle la décomposition en valeurs sin-

gulières de la matrice A et joue un rôle important dans un certains nombre de problèmes
de géométrie et de compression de l’information. Noter que A et D sont des matrices de
même taille (qui peut être rectangulaire).
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